A functioning quantum computer will be a machine that builds up, in a
programmable way, nonclassical correlations in a multipartite quantum system.
Linear optics quantum computation (LOQC) is an approach for achieving this
function that requires only simple, reliable linear optical elements, namely
beam splitters and phase shifters. Nonlinear optics is only required in the
form of single-photon sources for state initialization, and detectors. However,
the latter remain difficult to achieve with high fidelity. A new setting for
quantum optics has arisen in circuit quantum electrodynamics (cQED) using
superconducting (SC) quantum devices, and opening up the way to LOQC using
microwave, rather than visible photons. Much progress is being made in SC
qubits and cQED: high-fidelity Fock state generation and qubit measurements
provide single photon sources and detection. Here we show that the LOQC toolkit
in cQED can be completed with high-fidelity (>99.92%) linear optical elements.Comment: 4 pages, 3 figure