research

In-channel experiments on vertical swimming with bacteria-like robots

Abstract

Bio-inspired micro-robots are of great importance as to implement versatile microsystems for a variety of in vivo and in vitro applications in medicine and biology. Accurate models are necessary to understand the swimming and rigidbody dynamics of such systems. In this study, a series of experiments are conducted with a two-link cm-scale bioinspired robot moving vertically without a tether, in siliconefilled narrow cylindrical glass channels. Swimming velocities are obtained for a set of varying tail and wave geometries, and employed to validate a resistive force theory (RFT) model using modified resistance coefficients based on measured forward velocity and body rotation rates

    Similar works