Fluid inclusions and chemical composition of analcimes from Řepiště site (Outer Western Carpathians)

Abstract

Studied locality is situated in western part of the Silesian Unit of the Outer Western Carpathians. Analcime was found in magmatic rock of the teschenite association which was subject of extensive analcimization. Th e analcime crystals, filling the veins and cavities (amygdules, miaroles), have a size up to 5 mm and composite structure: a milky white core shows irregular shape, up to 1 mm in size, and a vitreous transparent rim showing euhedral crystals. The vitreous transparent analcime from veins forms either euhedral crystals or white-pink spherulitic aggregates (size up to 5 mm). Their composition is not close to stoichiometry, with the SiO2/Al2O3 mole ratios from 2.08 to 3.12. Increasing SiO2/Al2O3 molar ratios of analcimes are consistent with decreasing crystallization temperatures. Analcime contains abundant primary fluid inclusions, less secondary fluid inclusions. Fluid inclusions are one-phase (L-only) or two-phase (L+V) with essentially constant liquid-vapour ratios (gaseous phase takes ca. 10 vol. %). The homogenization temperatures of two-phase inclusions range between 122 and 180 °C (analcime from veins) and between 219 and 295 °C (analcime from cavities - amygdules, miaroles). Inclusions freeze at temperatures of -38 to -49 °C. The last ice melts at temperatures between -0.6 and -3.7 °C. The eutectic temperature was not possible to measure due to the small size of the inclusions. The hydrothermal analcime formed from fluids causing the pervasive post-magmatic hydrothermal alteration of the host magmatic rock. The parent fluids were low-salinity (0.7 to 3.2 wt. % NaCl equiv.) aqueous solutions that were progressively cooled during mineral precipitation. This mineral phase represents a transitional stage between the high-temperature and low-temperature stages of post-magmatic hydrothermal activity in the study area.Studied locality is situated in western part of the Silesian Unit of the Outer Western Carpathians. Analcime was found in magmatic rock of the teschenite association which was subject of extensive analcimization. Th e analcime crystals, filling the veins and cavities (amygdules, miaroles), have a size up to 5 mm and composite structure: a milky white core shows irregular shape, up to 1 mm in size, and a vitreous transparent rim showing euhedral crystals. The vitreous transparent analcime from veins forms either euhedral crystals or white-pink spherulitic aggregates (size up to 5 mm). Their composition is not close to stoichiometry, with the SiO2/Al2O3 mole ratios from 2.08 to 3.12. Increasing SiO2/Al2O3 molar ratios of analcimes are consistent with decreasing crystallization temperatures. Analcime contains abundant primary fluid inclusions, less secondary fluid inclusions. Fluid inclusions are one-phase (L-only) or two-phase (L+V) with essentially constant liquid-vapour ratios (gaseous phase takes ca. 10 vol. %). The homogenization temperatures of two-phase inclusions range between 122 and 180 °C (analcime from veins) and between 219 and 295 °C (analcime from cavities - amygdules, miaroles). Inclusions freeze at temperatures of -38 to -49 °C. The last ice melts at temperatures between -0.6 and -3.7 °C. The eutectic temperature was not possible to measure due to the small size of the inclusions. The hydrothermal analcime formed from fluids causing the pervasive post-magmatic hydrothermal alteration of the host magmatic rock. The parent fluids were low-salinity (0.7 to 3.2 wt. % NaCl equiv.) aqueous solutions that were progressively cooled during mineral precipitation. This mineral phase represents a transitional stage between the high-temperature and low-temperature stages of post-magmatic hydrothermal activity in the study area

    Similar works