Extending results of Oh--Zumbrun and Johnson--Zumbrun for parabolic
conservation laws, we show that spectral stability implies nonlinear stability
for spatially periodic viscous roll wave solutions of the one-dimensional St.
Venant equations for shallow water flow down an inclined ramp. The main new
issues to be overcome are incomplete parabolicity and the nonconservative form
of the equations, which leads to undifferentiated quadratic source terms that
cannot be handled using the estimates of the conservative case. The first is
resolved by treating the equations in the more favorable Lagrangian
coordinates, for which one can obtain large-amplitude nonlinear damping
estimates similar to those carried out by Mascia--Zumbrun in the related shock
wave case, assuming only symmetrizability of the hyperbolic part. The second is
resolved by the observation that, similarly as in the relaxation and detonation
cases, sources occurring in nonconservative components experience greater than
expected decay, comparable to that experienced by a differentiated source.Comment: Revision includes new appendix containing full proof of nonlinear
damping estimate. Minor mathematical typos fixed throughout, and more
complete connection to Whitham averaged system added. 42 page