We study spherically symmetric oscillations of electrons in plasma in the
frame of classical electrodynamics. Firstly, we analyze the electromagnetic
potentials for the system of radially oscillating charged particles. Secondly,
we consider both free and forced spherically symmetric oscillations of
electrons. Finally, we discuss the interaction between radially oscillating
electrons through the exchange of ion acoustic waves. It is obtained that the
effective potential of this interaction can be attractive and can transcend the
Debye-Huckel potential. We suggest that oscillating electrons can form bound
states at the initial stages of the spherical plasma structure evolution. The
possible applications of the obtained results for the theory of natural
plasmoids are examined.Comment: 9 pages in LaTeX2e, no figures; paper was significantly modified, 2
new references added, some inessential mathematics was removed, many typos
were corrected; final variant to be published in Physica Script