research

Type I planet migration in nearly laminar disks - long term behavior

Abstract

We carry out 2-D high resolution numerical simulations of type I planet migration with different disk viscosities. We find that the planet migration is strongly dependent on disk viscosities. Two kinds of density wave damping mechanisms are discussed. Accordingly, the angular momentum transport can be either viscosity dominated or shock dominated, depending on the disk viscosities. The long term migration behavior is different as well. Influences of the Rossby vortex instability on planet migration are also discussed. In addition, we investigate very weak shock generation in inviscid disks by small mass planets and compare the results with prior analytic results.Comment: Accepted for publication in Ap

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 05/06/2019