thesis

Phenotype Extraction: Estimation and Biometrical Genetic Analysis of Individual Dynamics

Abstract

Within-person data can exhibit a virtually limitless variety of statistical patterns, but it can be difficult to distinguish meaningful features from statistical artifacts. Studies of complex traits have previously used genetic signals like twin-based heritability to distinguish between the two. This dissertation is a collection of studies applying state-space modeling to conceptualize and estimate novel phenotypic constructs for use in psychiatric research and further biometrical genetic analysis. The aims are to: (1) relate control theoretic concepts to health-related phenotypes; (2) design statistical models that formally define those phenotypes; (3) estimate individual phenotypic values from time series data; (4) consider hierarchical methods for biometrical genetic analysis of individual phenotypic variation

    Similar works