research

Closable Multipliers

Abstract

Let (X,m) and (Y,n) be standard measure spaces. A function f in L(X×Y,m×n)L^\infty(X\times Y,m\times n) is called a (measurable) Schur multiplier if the map SfS_f, defined on the space of Hilbert-Schmidt operators from L2(X,m)L_2(X,m) to L2(Y,n)L_2(Y,n) by multiplying their integral kernels by f, is bounded in the operator norm. The paper studies measurable functions f for which SfS_f is closable in the norm topology or in the weak* topology. We obtain a characterisation of w*-closable multipliers and relate the question about norm closability to the theory of operator synthesis. We also study multipliers of two special types: if f is of Toeplitz type, that is, if f(x,y)=h(x-y), x,y in G, where G is a locally compact abelian group, then the closability of f is related to the local inclusion of h in the Fourier algebra A(G) of G. If f is a divided difference, that is, a function of the form (h(x)-h(y))/(x-y), then its closability is related to the "operator smoothness" of the function h. A number of examples of non-closable, norm closable and w*-closable multipliers are presented.Comment: 35 page

    Similar works