Quantifying interactions in DNA microarrays is of central importance for a
better understanding of their functioning. Hybridization thermodynamics for
nucleic acid strands in aqueous solution can be described by the so-called
nearest-neighbor model, which estimates the hybridization free energy of a
given sequence as a sum of dinucleotide terms. Compared with its solution
counterparts, hybridization in DNA microarrays may be hindered due to the
presence of a solid surface and of a high density of DNA strands. We present
here a study aimed at the determination of hybridization free energies in DNA
microarrays. Experiments are performed on custom Agilent slides. The solution
contains a single oligonucleotide. The microarray contains spots with a perfect
matching complementary sequence and other spots with one or two mismatches: in
total 1006 different probe spots, each replicated 15 times per microarray. The
free energy parameters are directly fitted from microarray data. The
experiments demonstrate a clear correlation between hybridization free energies
in the microarray and in solution. The experiments are fully consistent with
the Langmuir model at low intensities, but show a clear deviation at
intermediate (non-saturating) intensities. These results provide new
interesting insights for the quantification of molecular interactions in DNA
microarrays.Comment: 31 pages, 5 figure