Effects of material properties on anelastic behavior

Abstract

Metallerin anelastik davranışı, metroloji biliminin özellikle kütle, basınç ve boyutsal alanlarında, yerçekimiyle ilgili deneylerde, yüksek hassasiyet gerektiren cihaz ve sensör elemanlarının tasarımıyla ilgili bir malzeme özelliğidir. Sensöre uygulanan yükün genliği ve onun uygulanma sıklığı cihazın ölçüm belirsizliğini etkiler. Metallerin anelastiklik özelliği, malzemenin iç sürtünmesinin kaynağı olarak değerlendirilmiş ve sönümlemenin, uygulanan yükün hızıyla orantılı olarak değiştiği modellenmiştir. Bazı mekanik modeller, metallerde uygulanan yükün izi olarak sönümlemeyi tanımlamak amacıyla kullanılmıştır. Gecikmiş cevabın ve sönümlemenin tanımlanmasında elastiklik modülü, frekans alanında karmaşık bir sayı olarak ele alınabilmektedir. Bu sayının gerçel ve sanal kısımları kuvvet ile ortaya çıkan şekil değişimleri arasındaki fazı ve faz kaymasını göstermektedir. Bu değerlerin oranı malzemenin modül kaybını vermektedir. Bu çalışmada anelastiklik ölçümü için, esnek elemanı bakır berilyum (Cu-Be) malzemeden imal edilmiş yeni bir ters sarkaç tasarlanmış ve performansının temel sınırları belirlenmiştir. Yeni sarkacın esnek elemanı dikey pozisyonda basma değil çekme gerilmesine maruz kalmaktadır. Bir çok esnek eleman çekme gerilmesi altında çalışmakta olup, basma gerilmesi uygulamalarında performansları kötüdür. Esnek elemanın çekme gerilmesine maruz kalabilmesi için, bağlandığı sarkaç koluyla yeni bir şekilde monte edilmiştir. Sarkacın kalite faktörü, üstel bir fonksiyon olarak azalan salınımların CCD (Charge-Coupled Device: Işığa duyarlı hassas bir cihaz) kamera ile, 2 s ile 30 s arasındaki periyotlarda tespit edilmesiyle elde edilen veriler kullanılarak hesaplanmıştır. Farklı içyapı özellikleri için modül kayıpları tespit edilip gerilmeye göre bu kayıpların miktarı araştırılmıştır.Anahtar Kelimeler: Anelastiklik, iç sürtünme, ters sarkaç, esnek eleman, bakır berilyum alaşımı.A new inverted pendulum with a copper-beryllium (Cu-Be) flexure element is designed and its performance is determined by detecting the respective angular changes of the pendulum using a ccd camera within an oscillation period range of 2 s and 30 s. A new arrangement was made by clamping of the flexure element and pendulum rod to avoid subjecting them to compression stress due to the weight of the overall pendulum mass on the flexure. This new form of inverted pendulum employs a flexure specially clamped to the pendulum rod to provide tension deformation under the weight of mass and could be used for dynamic testing of highly sensitive flexure elements. The quality factors of the pendulum were determined with respect to flexure elements by measuring free oscillations decaying exponentially. The results showed that the new inverted pendulum with a different connection between the flexure element and pendulum rod can be used to measure the anelasticity of materials and to test elements under bending deformation in a dynamic way. Many experimental apparatuses have been designed and used to investigate the anelastic behavior of materials. These are divided into three main types, in terms of the frequency of use: subresonance, resonance and supraresonance methods. The resonance method is particularly useful for the dynamic testing of the flexure in a pendulum. There are many types of pendulum apparatus and various clamping orientations are used for the measurement of anelasticity. The most frequently used type of pendulum to determine anelastic phenomena in materials is the torsion pendulum consisting basically of a mass as an inertia member suspended from a wire specimen that is subjected to a twisting deformation. The standard pendulum is used with various modifications. The simple pendulum is known as the basic arrangement of the standard pendulum, the specimen is under tension stress and subjected to bending stress but low frequencies cannot be easily generated because frequencies depend on the length of pendulum rod. The frequency changes in inverse proportion to the square root of the rod length so that periods of more than a few seconds require a very long pendulum rod, which is not useful for experimental purposes. An inverted pendulum is another version of the standard pendulum known as the "swinging type". It consists of a rod on the top of which a suspension mass placed. The rod is supported by a spring attached to its bottom in order to hold the pendulum rod vertically. The spring comes under compression stress and is subjected to a twisting deformation due to the suspended mass. The oscillation of the pendulum rod depends mainly on torque acting on the spring element and can easily vary over a wide band. Some researchers have used various types of combined and torsional pendulum apparatuses to determine the anelasticity of copper-beryllium flexures, for the purpose of designing a highly sensitive mass comparator. Different types of flexures were used as pivot elements. Some measurements were carried out by using an inverted pendulum with an instant steel flexure element which was under compression and subjected to bending deformation, and it has been shown that the inverted pendulum was a valuable tool for the study of internal friction, that it could be used to probe anelasticity within a wide band of frequencies, and that it allowed direct tests of the features of anelastic behavior that were hard to perform in other ways. An inverted pendulum is a valuable instrument for precision measurement, gravitational physics, and also for measuring the anelasticity of , which is one of the mechanical properties connected to designing highly accurate measurement devices and sensors used in the mass, force, pressure and dimensional fields of metrology. The frequency of an inverted pendulum can easily be changed over a wide band by either adding mass on top of the pendulum or by changing the centre of gravity of the suspended mass. This enables dynamic testing of metals, especially anelasticity in the flexure elements of the pendulum. This study covers the attempts of searching the relationships between microstructural material properties of flexure elements and their respective anelastic behavior by using an inverted pendulum.Keywords: Anelasticity, internal friction, inverted pendulum, flexure element, copper beryllium alloy

    Similar works