Degradation kinetics of resorcinol by Enterobacter cloacae isolate

Abstract

Resorcinol was utilized as the sole carbon and energy source by Enterobacter cloacae (identification by 16S rDNA nucleotide sequencing Genbank Accession Number JN093148). The different concentration of resorcinol utilized by the bacterial isolate ranged between 55 and 220 mg l-1 at 30°C and pH of 7.0. It was observed that the batch experimental results were best fitted for Michaelis-Menten and Monod models (for 220 mg l-1 resorcinol) with time under defined conditions. The kinetics constants for the Michaelis-Menten equation (enzyme kinetics) were Km = 11.00 mM and Vmax = 0.03 mM min-1 and for the Monod equation (growth kinetics) was μmax = 0.0371 h-1 in the inhibitory region and KS = 22.09 mg l-1. It was assumed that enzyme reactions limit biomass production (Monod kinetics) during resorcinol degradation by E. cloacae. The enzyme kinetic model (Michaelis-Menten) used was fit to the resorcinol degradation profiles with a set of model parameters such as using pre-induced E. cloacae cells on 220 mg l-1 resorcinol

    Similar works