research

Sharp Liouville results for fully nonlinear equations with power-growth nonlinearities

Abstract

We study fully nonlinear elliptic equations such as F(D2u)=up,p>1, F(D^2u) = u^p, \quad p>1, in Rn\R^n or in exterior domains, where FF is any uniformly elliptic, positively homogeneous operator. We show that there exists a critical exponent, depending on the homogeneity of the fundamental solution of FF, that sharply characterizes the range of p>1p>1 for which there exist positive supersolutions or solutions in any exterior domain. Our result generalizes theorems of Bidaut-V\'eron \cite{B} as well as Cutri and Leoni \cite{CL}, who found critical exponents for supersolutions in the whole space Rn\R^n, in case F-F is Laplace's operator and Pucci's operator, respectively. The arguments we present are new and rely only on the scaling properties of the equation and the maximum principle.Comment: 16 pages, new existence results adde

    Similar works