We study the substructure statistics of a representative sample of galaxy
clusters by means of two currently popular substructure characterisation
methods, power ratios and centroid shifts. We use the 31 clusters from the
REXCESS sample, compiled from the southern ROSAT All-Sky cluster survey REFLEX
with a morphologically unbiased selection in X-ray luminosity and redshift, all
of which have been reobserved with XMM-Newton. We investigate the uncertainties
of the substructure parameters and examine the dependence of the results on
projection effects, finding that the uncertainties of the parameters can be
quite substantial. Thus while the quantification of the dynamical state of
individual clusters with these parameters should be treated with extreme
caution, these substructure measures provide powerful statistical tools to
characterise trends of properties in large cluster samples. The centre shift
parameter, w, is found to be more sensitive in general. For the REXCESS sample
neither the occurence of substructure nor the presence of cool cores depends on
cluster mass. There is a significant anti-correlation between the existence of
substantial substructure and cool cores. The simulated clusters show on average
larger substructure parameters than the observed clusters, a trend that is
traced to the fact that cool regions are more pronounced in the simulated
clusters, leading to stronger substructure measures in merging clusters and
clusters with offset cores. Moreover, the frequency of cool regions is higher
in the simulations than in the observations, implying that the description of
the physical processes shaping cluster formation in the simulations requires
further improvement.Comment: Mauscript submitted to Astronomy and Astrophysics, 20 figure