We consider 1-dimensional, unimodular Pisot substitution tilings with three
intervals, and discuss conditions under which pairs of such tilings are locally
isomorhphic (LI), or mutually locally derivable (MDL). For this purpose, we
regard the substitutions as homomorphisms of the underlying free group with
three generators. Then, if two substitutions are conjugated by an inner
automorphism of the free group, the two tilings are LI, and a conjugating outer
automorphism between two substitutions can often be used to prove that the two
tilings are MLD. We present several examples illustrating the different
phenomena that can occur in this context. In particular, we show how two
substitution tilings can be MLD even if their substitution matrices are not
equal, but only conjugate in GL(n,Z). We also illustrate how the (in
our case fractal) windows of MLD tilings can be reconstructed from each other,
and discuss how the conjugating group automorphism affects the substitution
generating the window boundaries.Comment: Presented at Aperiodic'09 (Liverpool