Половые отличия пула свободных аминокислот-нейромедиаторов у крыс Крушинского-Молодкиной

Abstract

The study of the role of neurotransmitter systems in the pathogenesis of epilepsy is one of the priorities of epileptology. New data on the functions of free neurotransmitter-like amino acid in the central nervous system are of the greatest importance and determine the prospects for the development of novel effective anticonvulsants. It is widely believed in clinical medicine that epilepsy has distinct gender characteristics. The aim of this study was to investigate the gender peculiarities in the content of neurotransmitter amino acids in the brain of Krushinsky-Molodkina (KM) rats, which were used as model organisms for the study of genetically induced audiogenic epilepsy. The content of Asp, Glu, GABA, Gly, and Tau of the medulla oblongata, hippocampus and cerebral cortex were determined using high-performance liquid chromatography (HPLC) in intact KM rats, KM rats exposed to a series of epileptiform seizures, and Wistar rats (control group). Both the Wistar and KM rats had gender distinctions in the distribution of free amino acids among the investigated brain parts. The audiogenic epilepsy was characterized by smoothing gender differences as well as differences between the concentrations of free amino acids in the cortex and medulla oblongata, specific for Wistar rats. The changes observed in male rats after the set of seizures included the increase in GABA concentration and a decrease in the Gly level in all investigated brain parts, as well as the decrease of the Tau content in the cortex and hippocampus. At the same time, the Glu content in cortex increased, while the Asp level decreased. After 6 days of audiogenic stimulations the female KM rats demonstrated the increase in the Glu level in all investigated brain parts, the increase in Gly and Asp levels in hippocampus, and no changes in the GABA content. Thus, after the set of epileptiform seizures the KM rats achieved a new steady state of the studied amino acids pool, which differed in males and females. In this case, gender differences significantly changed after the seizures. © 2020 Russian Academy of Medical Sciences. All rights reserved.The work was performed within the framework of the state task of the IIF UB RAS (Registration number AAAA-A18-118020590108-7)

    Similar works