CORE
🇺🇦
make metadata, not war
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Azolo[1,5-a]pyrimidines and Their Condensed Analogs with Anticoagulant Activity
Authors
V. V. Fedotov
K. A. Gaidukova
+9 more
V. A. Kosolapov
S. K. Kotovskaya
A. F. Kucheryavenko
V. L. Rusinov
K. V. Savateev
V. S. Sirotenko
A. A. Spasov
G. M. Uskov
P. M. Vasiliev
Publication date
1 January 2022
Publisher
'MDPI AG'
Abstract
Hypercytokinemia, or cytokine storm, is one of the severe complications of viral and bacterial infections, involving the release of abnormal amounts of cytokines, resulting in a massive inflammatory response. Cytokine storm is associated with COVID-19 and sepsis high mortality rate by developing epithelial dysfunction and coagulopathy, leading to thromboembolism and multiple organ dysfunction syndrome. Anticoagulant therapy is an important tactic to prevent thrombosis in sepsis and COVID-19, but recent data show the incompatibility of modern direct oral anticoagulants and antiviral agents. It seems relevant to develop dual-action drugs with antiviral and anticoagulant properties. At the same time, it was shown that azolo[1,5-a]pyrimidines are heterocycles with a broad spectrum of antiviral activity. We have synthesized a new family of azolo[1,5-a]pyrimidines and their condensed polycyclic analogs by cyclocondensation reactions and direct CH-functionalization and studied their anticoagulant properties. Five compounds among 1,2,4-triazolo[1,5-a]pyrimidin-7-ones and 5-alkyl-1,3,4-thiadiazolo[3,2-a]purin-8-ones demonstrated higher anticoagulant activity than the reference drug, dabigatran etexilate. Antithrombin activity of most active compounds was confirmed using lipopolysaccharide (LPS)-treated blood to mimic the conditions of cytokine release syndrome. The studied compounds affected only the thrombin time value, reliably increasing it 6.5–15.2 times as compared to LPS-treated blood. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.Funding: This research was funded within the framework of the grant agreement as government subsidies from the federal budget in accordance with paragraph 4 of article 78.1 of the Budget Code of the Russian Federation (Moscow, 1 October 2020, No. 075-15-2020-777)
Similar works
Full text
Available Versions
Institutional repository of Ural Federal University named after the first President of Russia B.N.Yeltsin
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:elar.urfu.ru:10995/112208
Last time updated on 17/05/2022