Among the methods for solving ODE-IVPs, the class of General Linear Methods
(GLMs) is able to encompass most of them, ranging from Linear Multistep
Formulae (LMF) to RK formulae. Moreover, it is possible to obtain methods able
to overcome typical drawbacks of the previous classes of methods. For example,
order barriers for stable LMF and the problem of order reduction for RK
methods. Nevertheless, these goals are usually achieved at the price of a
higher computational cost. Consequently, many efforts have been made in order
to derive GLMs with particular features, to be exploited for their efficient
implementation. In recent years, the derivation of GLMs from particular
Boundary Value Methods (BVMs), namely the family of Generalized BDF (GBDF), has
been proposed for the numerical solution of stiff ODE-IVPs. In particular, this
approach has been recently developed, resulting in a new family of L-stable
GLMs of arbitrarily high order, whose theory is here completed and fully
worked-out. Moreover, for each one of such methods, it is possible to define a
corresponding Blended GLM which is equivalent to it from the point of view of
the stability and order properties. These blended methods, in turn, allow the
definition of efficient nonlinear splittings for solving the generated discrete
problems. A few numerical tests, confirming the excellent potential of such
blended methods, are also reported.Comment: 22 pages, 8 figure