The 2-stage assembly flowshop scheduling problem with total completion time: Efficient constructive heuristic and metaheuristic

Abstract

In this paper, we address the 2-stage assembly scheduling problem where there are m machines in the first stage to manufacture the components of a product and one assembly station (machine) in the second stage. The objective considered is the minimisation of the total completion time. Since the NP-hard nature of this problem is well-established, most previous research has focused on finding approximate solutions in reasonable computation time. In our paper, we first review and derive a number of problem properties and, based on these ideas, we develop a constructive heuristic that outperforms the existing constructive heuristics for the problem, providing solutions almost in real-time. Finally, for the cases where extremely high-quality solutions are required, a variable local search algorithm is proposed. The computational experience carried out shows that the algorithm outperforms the best existing metaheuristic for the problem. As a summary, the heuristics presented in the paper substantially modify the state-of-the-art of the approximate methods for the 2-stage assembly scheduling problem with total completion time objective

    Similar works