'Institute of Electrical and Electronics Engineers (IEEE)'
Doi
Abstract
The suitability of operational transconductance amplifiers (OTAs) as the main active element to obtain basic building blocks for the design of programmable nonlinear continuous-time networks is examined. The main purpose is to show that the OTA, as the active element in basic building blocks, can be efficiently used for nonlinear continuous-time function synthesis. Two efficient nonlinear function synthesis approaches are presented. The first approach is a rational approximation, and the second is a piecewise-linear approach. Test circuits have been integrated using a 3-μm p-well CMOS process. The flexibility of the designed and tested circuits is confirmed