A Model-Based Direct Power Control for Three-Phase Power Converters

Abstract

Direct Power Control (DPC) technique has been widely used as control strategy for three-phase power rectifiers due to its simplicity and good performance. The DPC uses the instantaneous active and reactive power to control the power converter, the controller design has been proposed as a direct control with a look up table (LUT), and in recent works, as an indirect control with an inner control loop with proportional plus integral controllers for the instantaneous active and reactive power errors. In this paper a model-based DPC for three-phase power converters is designed, obtaining expressions for the input control signal which allow to design an adaptive control law minimizing the errors introduced by the parameters uncertainties as the smoothing inductor value or the grid frequency. Controller design process, stability study of the system and experimental results for a synchronous three-phase power rectifier prototype are presented to validate the proposed controller

    Similar works