Angle rigidity and its usage to stabilize multi-agent formations in 2D

Abstract

Motivated by the challenging formation stabilization problem for mobile robotic teams wherein no distance or relative position measurements are available but each robot can only measure some of relative angles with respect to its neighbors in its local coordinate frame, we develop the notion of "angle rigidity" for a multi-point framework, named "angularity", consisting of a set of nodes embedded in a Euclidean space and a set of angle constraints among them. Different from bearings or angles defined in a global frame, the angles we use do not rely on the knowledge of a global frame and are signed according to the counter-clockwise direction. Here angle rigidity refers to the property specifying that under proper angle constraints, the angularity can only translate, rotate or scale as a whole when one or more of its nodes are perturbed locally. We first demonstrate that this angle rigidity property, in sharp comparison to bearing rigidity or other reported rigidity related to angles of frameworks in the literature, is not a global property since an angle rigid angularity may allow flex ambiguity. We then construct necessary and sufficient condit

    Similar works

    Available Versions

    Last time updated on 12/08/2021