Exploring the relationship between EMG feature space characteristics and control performance in machine learning myoelectric control

Abstract

In myoelectric machine learning (ML) based control, it has been demonstrated that control performance usually increases with training, but it remains largely unknown which underlying factors govern these improvements. It has been suggested that the increase in performance originates from changes in characteristics of the Electromyography (EMG) patterns, such as separability or repeatability. However, the relation between these EMG metrics and control performance has hardly been studied. We assessed the relation between three common EMG feature space metrics (separability, variability and repeatability) in 20 able bodied participants who learned ML myoelectric control in a virtual task over 15 training blocks on 5 days. We assessed the change in offline and real-time performance, as well as the change of each EMG metric over the training. Subsequently, we assessed the relation between individual EMG metrics and offline and real-time performance via correlation analysis. Last, we tried to predict real-time performance from all EMG metrics via L2-regularized linear regression. Results showed that real-time performance improved with training, but there was no change in offline performance or in any of the EMG metrics. Furthermore, we only found a very low correlation between separability and real-time performance and no correlation between any other EMG metric and real-time performance. Finally, real-time performance could not be successfully predicted from all EMG metrics employing L2-regularized linear regression. We concluded that the three EMG metrics and real-time performance appear to be unrelated

    Similar works

    Available Versions

    Last time updated on 29/05/2021