Output regulation of Euler-Lagrange systems based on error and velocity feedback

Abstract

Based on a certainty equivalence property, we propose an adaptive internal model control law that solves global robust output regulation of uncertain Euler-Lagrange (EL) systems based only on error (or relative position) and velocity feedback. The proposed controller does not require apriori knowledge of reference signal and its derivatives, which are commonly assumed in literature. It enables a self-learning mechanism of the closed-loop EL systems where the adaptive internal model-based controller is able to learn the desired trajectories and adapt itself to the uncertain plant parameters. Furthermore, the analysis offers insights to the design of internal model-based output regulation for multivariable nonlinear systems with uniform vector relative degree two

    Similar works

    Available Versions

    Last time updated on 29/05/2021