Abstract

The energetic beam of (spin and isospin zero) α\alpha-particles remains a very efficient probe for the nuclear isoscalar giant resonances. In the present work, a microscopic folding model study of the isoscalar giant resonances in 208^{208}Pb induced by inelastic \aPb scattering at Elab=240E_{\rm lab}=240 and 386 MeV has been performed using the (complex) CDM3Y6 interaction and nuclear transition densities given by both the collective model and Random Phase Approximation (RPA) approach. The fractions of energy weighted sum rule around the main peaks of the isoscalar monopole, dipole and quadrupole giant resonances were probed in the Distorted Wave Born Approximation analysis of inelastic \aPb scattering using the double-folded form factors given by different choices of the nuclear transition densities. The energy distribution of the E0,E1E0, E1 and E2E2 strengths given by the multipole decomposition {analyses} of the \aap data under study are compared with those predicted by the RPA calculation.Comment: Accepted for publication in Nuclear Physics

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/12/2019