research

Green's function method for strength function in three-body continuum

Abstract

Practical methods to compute dipole strengths for a three-body system by using a discretized continuum are analyzed. New techniques involving Green's function are developed, either by correcting the tail of the approximate wave function in a direct calculation of the strength function or by using a solution of a driven Schroedinger equation in a summed expression of the strength. They are compared with the complex scaling method and the Lorentz integral transform, also making use of a discretized continuum. Numerical tests are performed with a hyperscalar three-body potential in the hyperspherical-harmonics formalism. They show that the Lorentz integral transform method is less practical than the other methods because of a difficult inverse transform. These other methods provide in general comparable accuracies.Comment: 22 pages, 8 figures, to appear in Progress of Theoretical Physic

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 05/06/2019