The transient evolution of carriers in an intrinsic graphene under ultrafast
excitation, which is caused by the collisionless interband transitions, is
studied theoretically. The energy relaxation due to the quasielastic acoustic
phonon scattering and the interband generation-recombination transitions due to
thermal radiation are analyzed. The distributions of carriers are obtained for
the limiting cases when carrier-carrier scattering is negligible and when the
intercarrier scattering imposes the quasiequilibrium distribution. The
transient optical response (differential reflectivity and transmissivity) on a
probe radiation and transient photoconductivity (response on a weak dc field)
appears to be strongly dependent on the relaxation and recombination dynamics
of carriers.Comment: 9 pages, 8 figure