Abstract

We describe a practical procedure to calculate the Coulomb matrix elements of 2D spatially separated and confined charge carriers, which are needed for detailed theoretical descriptions of important condensed matter finite systems. We derive an analytical expression, for arbitrary separations, in terms of a single infinite series and apply a u-type Levin transform in order to accelerate the resulting infinite series. This procedure has proven to be efficient and accurate. Direct consequences concerning the functional dependence of the matrix elements on the separation distance, transition amplitudes and the diagonalization of a single electron-hole pair in vertically stacked parabolic quantum dots are presented.Comment: 8 page

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/12/2019