We fluidize a granular medium through localized stirring and probe the
mechanical response of quiescent regions far away from the main flow. In these
regions the material behaves like a liquid: high-density probes sink,
low-density probes float at the depth given by Archimedes' law, and drag forces
on moving probes scale linearly with the velocity. The fluid-like character of
the material is set by agitations generated in the stirred region, suggesting a
non-local rheology: the relation between applied stress and observed strain
rate in one location depends on the strain rate in another location