Optimizing Design Parameters for Ground Articulating Pipeline System Using Discrete Event Simulation

Abstract

The ground articulating pipeline (GAP) system was designed to transport oil sands slurry from the face to a fixed pipeline system (Frimpong et al., 2002). The GAP system can reduce the dependence on haulage trucks for long haulage distances and to achieve efficient management of the excavation-haulage operations. However, further research is required to investigate how to optimize the interaction between the shovel and GAP system and the impact of the new pipe arm adding process on production. In this research, discrete event simulation using Arena® was used to analyze the interaction between the shovel and GAP system. The objectives of this simulation are to: (1) Investigate the GAP system performance, as a function of shovel cycle time, shovel capacity and GAP system throughput, when working with a shovel; and (2) Recommend optimal GAP design parameters, based on the simulation results. The results show that the degree of importance of the three factors investigated are shovel capacity \u3e shovel cycle time \u3e GAP system throughput rate. Based on this evaluation, the most important factor (out of the three) is identified and its optimal value found from further experiments. It is also recommended that a larger hopper on the mobile slurry system is considered to improve system performance. This work further refines the design of the GAP system and moves it closer to application in the mining industry

    Similar works