Time-domain thru-reflect-line (TRL) calibration error assessment and its mitigation and modeling of multilayer printed circuit boards (PCB) with complex area fills

Abstract

Part 1 for this thesis is on the error assessment of a time-domain (t-TRL) calibration technique. Application of the Thru-Reflect-Line (TRL) calibration to time-domain measurements of S-parameters (t-TRL) can be used for the characterization of the printed circuit boards (PCBs). However, t-TRL calibrated results still have deviations from the reference frequency-domain vector network analyzer (VNA) calibrated results. There are two main sources of errors in the t-TRL calibration. They are random errors, such as an additive noise and jitter, and systematic errors associated with cables, connectors, and port mismatches. This work addresses these two types of errors by proper selection of the number of sampling points, waveform averages, and time record. Methods tried out to eliminate or reduce these errors are detailed in this work. Measurements and simulations were performed for implementing these methods, and the results are explained. A t-TRL calibration automation tool based on TDR/TDT measurements has been developed. Part 2 of this thesis is on the modeling of multilayer PCBs with complex area fills and floating planes. Noise on the power distribution network (PDN) and between the power area fills in multilayer PCBs with complex geometries is a significant concern. Modeling of such PCBs can be done with a cavity model approach. Correlation of a 3D EM solver results with the Multilayer Via Transition Tool (MVTT) results based on cavity model is explained here. Additional modeling and validation was done using the equivalent inductance method --Abstract, page iii

    Similar works