Magnetic Ordering in the Rare Earth Intermetallic Compound Tb₂Ti₃Ge₄: Magnetization and Neutron Diffraction Studies

Abstract

Magnetization and neutron diffraction studies on a polycrystalline Tb2Ti3Ge4 sample (orthorhombic Sm5Ge4-type structure, space group Pnma, No. 62) have been carried out. This compound is found to order antiferromagnetically at ~18 K (TN). The magnetization (M) versus field (H) isotherms obtained at 2, 3, 5, and 10 K indicate a field-induced antiferromagnetic to ferromagnetic transition in fields of the order of 0.5 T. The saturation magnetization value at 2.5 K (M extrapolated to 1/H--\u3e0) is only ~5.6µB/Tb3+, suggesting the possible presence of crystal field effects with or without a persisting antiferromagnetic component. Neutron powder diffraction data at 10 K confirm the existence of a magnetic long range order. Modeling of the magnetic scattering reveals a complex and incommensurate antiferromagnetic spin structure below TN

    Similar works