Computer simulations have become an important tool across the biomedical
sciences and beyond. For many important problems several different models or
hypotheses exist and choosing which one best describes reality or observed data
is not straightforward. We therefore require suitable statistical tools that
allow us to choose rationally between different mechanistic models of e.g.
signal transduction or gene regulation networks. This is particularly
challenging in systems biology where only a small number of molecular species
can be assayed at any given time and all measurements are subject to
measurement uncertainty. Here we develop such a model selection framework based
on approximate Bayesian computation and employing sequential Monte Carlo
sampling. We show that our approach can be applied across a wide range of
biological scenarios, and we illustrate its use on real data describing
influenza dynamics and the JAK-STAT signalling pathway. Bayesian model
selection strikes a balance between the complexity of the simulation models and
their ability to describe observed data. The present approach enables us to
employ the whole formal apparatus to any system that can be (efficiently)
simulated, even when exact likelihoods are computationally intractable.Comment: This article is in press in Bioinformatics, 2009. Advance Access is
available on Bioinformatics webpag