Industrial Robot Trajectory Stiffness Mapping for Hybrid Manufacturing Process

Abstract

The application of using industrial robots in hybrid manufacturing is promising, but the heavy external load applied on robot system, including the weight of deposition extruder or the cutting force from machining process, affects the operation accuracy significantly. This paper proposed a new method for helping robot to find the best position and orientation to perform heavy duty tasks based on the current system stiffness. By analyzing the robot kinematic and stiffness matrix properties of robot, a new evaluation formulation has been established for mapping the trajectory¢‚¬„¢s stiffness within the robot¢‚¬„¢s working volumetric. The influence of different position and orientation for hybrid manufacturing working path in different scale has been discussed. Finally, a visualized evaluation map can be obtained to describe the stiffness difference of a robotic deposition working path at different positions and orientations. The method is important for improving the operation performance of robot system with current stiffness capability

    Similar works