Electric-drive vehicle emulation using advanced test bench

Abstract

Vehicle electrification is considered to be the most promising approach toward addressing the concerns on climate change, sustainability, and rapid depletion of fossil fuel resources. As a result electric-drive vehicle (EDV) technology is becoming the subject of many research studies, from academia and research laboratories to automotive industries and their suppliers. However, a crucial step toward the success of EDV implementation is developing test platforms that closely emulate the behavior of these vehicles. In this dissertation, a new approach for emulating an EDV system on a motor/dynamometer test bench is investigated. Two different methods of emulation are discussed which are based on predefined drive cycle and unpredictable driving behavior. MATLAB/Simulink is used to model the test bench and simulations are carried out for each case. Experimental test bench results are also presented to validate hardware-in-the-loop (HIL) real-time performance for each method. Furthermore, to provide a more realistic approach towards EDV emulation a braking system suitable for motor/dynamometer architecture is proposed. The proposed brake controller represents a very close model of an actual EDV braking system and takes into account both regenerative and friction braking limitations. Finally, the challenges and restrictions of using a full scale test bench are outlined. To overcome these limitations, the development of an educational small scale hybrid electric vehicle (HEV) learning module is discussed which provides an ideal test platform to simulate and study both electric and HEV powertrains --Abstract, page iv

    Similar works