Eigenvalue Estimates of Laplacians Defined by Fractal Measures

Abstract

We study various lower and upper estimates for the first eigenvalue of Dirichlet Laplacians defined by positive Borel measures on bounded open subsets of Euclidean spaces. These Laplacians and the corresponding eigenvalue estimates differ from classical ones in that the defining measures can be singular. By using properties of self-similar measures, such as Strichartz\u27s second-order self-similar identities, we improve some of the eigenvalue estimates

    Similar works