Prediction of seismic site responses has been one of the most important tasks in geotechnical earthquake engineering. Since Kanai used the multiple wave reflection theory to compute horizontal ground movements against seismic shaking, a number of researchers have extended the basic concept proposed by Kanai. Performance of seismic site response methods, however, has always invited open questions for problems involving extreme seismic shaking and large deformation of soils due, for example, to liquefaction and lateral spreading. A new numerical method SRANG3D (Site Response Analysis of Non-linear Ground in 3 Dimensions) has been developed to improve our prediction capabilities for seismic site responses. SRANG3D computes seismic site responses that involve vertical propagation of two horizontally polarized S waves and one P wave. The most distinct feature of SRANG3D is that the stress-strain relationships of soil can be represented by a combination of various elasto-plastic constitutive soil models and discrete element models. This paper introduces the new site-response analysis method SRANG3D and the paper highlights results obtained from this new method. Our study demonstrated that SRANG3D yields improved predictions of the large-scale experimental data than currently available site-response analysis methods