Liquefaction Analysis of a Petroleum Tank-Ground-Pile Ring System in Reclaimed Ground Near Seashore

Abstract

In this paper, liquefaction analysis (LIQCA2D, LIQCA3D) of a petroleum tank-ground-foundation system is conducted using a dynamic finite element-finite difference method. The nonlinearity of the ground is simulated with a kinematic hardening elastoplastic model, which has been verified by a series of hollow cylindrical torsional shear tests and been proved that it can well predict the behaviors of soils such as the liquefaction strength curve, the stress-strain relation as well as the effective stress paths during cyclic loading. In the numerical analyses, an FEM-DEM analytical method is adopted to the soil-water coupled analysis. The petroleum tank is built on a reclaimed ground and is near to seashore. In order to enhance the seismic strength of the tank-soil system, a ring-shaped steel pile wall is designed for the tank. At first, two-dimensional (2-D) and three-dimensional (3-D) finite element analyses are conducted for the tank without the remediation method to identify the difference between 2-D and 3-D analyses. Then, a 3-D dynamic analysis is conducted for the tank in two different cases, that is, with and without the remediation. The mu-nose of the research is to evaluate numerically the effectiveness of the remediation method when a tank is built on a potentially liquefied ground

    Similar works