НАПРЯЖЁННОСВЯЗАННЫЕ КОНСТРУКЦИИ

Abstract

Ideal designs, made of rigid bars (levers), inextensible cables and incompressible struts are considered. In English such constructions are called "tensegrity frameworks". In the particular case of structures composed of only the levers, — this is a bar and joint frameworks. In recent times the tensegrity frameworks are increasingly used in architecture and construction, for example, the construction of bridges. In English mathematical literature geometric properties of such structures were studied since the seventies of the last century. This article is apparently the first in Russian mathematical literature devoted to this topic. It is a breath survey to the theory of tensegrity frameworks. It introduces mathematical formalization of tensegrity frameworks in the spirit of the work of the author on hinge mechanisms. This formalization includes original Russian terminology, not reducible to the borrowing of English words. Only not pinned tensegrity frameworks are investigated. We call a tensegrity frameworks, allowing the internal stress, and not allowing a continuous deformation with a change of form, — a truss. A truss that can’not be assembled in a different way to be not congruent to initial one is called Globally Rigid. If a tensegrity frameworks is Globally Rigid in Rn and also Globally Rigid in every RN for N > n it is called Universally Rigid. We focus on the problem — when a given tensegrity framework is Globally Rigid? We consider an effective method for solving this problem, based on investigation of particular function – the potential energy of the structure. We search a tensegrity frameworks for which this potential energy is minimal. The method is described in detail in the article. The main theorem, giving a sufficient condition of Universal Rigidity of tensegrity framework is proved in details. The study of internal stresses of a tensegrity framework and its stress matrix, by means of which the potential energy is written, is of fundamental importance. Examples of applications of this theorem to planar and spatial tensegrity frameworks are presented. In general, this subject is not yet sufficiently developed, and is currently actively investigated. At the end of the article some open questions are formulated. Рассматриваются идеальные конструкции, составленные из жестких рычагов, нерастяжимых веревок и несжимаемых распорок. По английски такие конструкции называют „tensegrity frameworks“, что можно перевести как напряженносвязанные конструкции. В частном случае конструкций, составленных из одних лишь рычагов, — это обычные шарнирно- рычажные конструкции. В последнее время напряженносвязанные конструкции все шире применяются в архитектуре и строительстве, например, строительстве мостов. В русской инженерной литературе они называются вантовыми. В англоязычной математической литературе геометрические свойства таких конструкций изучаются с семидесятых годов прошлого века. Данная статья, по-видимому, первая в отечественной математической литературе, посвященная этому вопросу. Она носит ознакомительно-обзорный характер. Вводится математическая формализация напряженносвязанных конструкций в духе работ автора по шарнирно-рычажным конструкциям. Эта формализация включает оригинальную терминологию, вовсе не сводящуюся к заимствованию английских слов. Рассматриваются лишь незакрепленные конструкции. Стяжками называем конструкции, допускающие внутреннее напряжение, и не допускающие непрерывной деформации с изменением формы. Возникает понятие определенной стяжки, то есть такой, которую из данных элементов можно собрать в заданном порядке единственным способом, с точностью до движений в пространстве как жесткого целого. Естественно возникает и понятие вполне определенной стяжки, как стяжки определенной не только в том евклидовом пространстве, где она построена, но и во всех евклидовых пространствах большего числа измерений. Основное внимание уделяется задаче — когда стяжка является определенной? Для решения задачи эффективен метод рассмотрения определенным образом выбранной функции – потенциальной энергии конструкции. Ищутся конструкции, для которых эта потенциальная энергия минимальна. Метод подробно изложен в статье. Приведено доказательство основной теоремы, дающей достаточное условие сверхопределённости стяжки. Фундаментальное значение в исследовании играет рассмотрение внутренних напряжений конструкции и ее матрицы напряжений, через которую записывается потенциальная энергия. Приведены примеры применения этой теоремы к плоским и пространственным конструкциям. В целом данная тематика еще недостаточно разработана, и в настоящее время активно развивается. В конце статьи приведены открытые вопросы.

    Similar works