О МИНИМАЛЬНЫХ МНОГОЧЛЕНАХ ОСТАТОЧНЫХ ДРОБЕЙ ДЛЯ АЛГЕБРАИЧЕСКИХ ИРРАЦИОНАЛЬНОСТЕЙ

Abstract

We study the appearance and properties of minimal residual fractions of polynomials in the decomposition of algebraic numbers into continued fractions. It is shown that for purely real algebraic irrationalities α of degree n > 2, starting from some number m0 = m0(α), the sequence of residual fractions αm is a sequence of given algebraic irrationalities. The definition of the generalized number of Piso, which differs from the definition of numbers he’s also the lack of any requirement of integrality. It is shown that for arbitrary real algebraic irrationals α of degree n > 2, starting from some number m0 = m0(α), the sequence of residual fractions αm is a sequence of generalized numbers Piso. Found an asymptotic formula for the conjugate number to the residual fractions of generalized numbers Piso. From this formula it follows that associated to the residual fraction αm are concentrated about fractions − Qm−2 Qm−1 is either in the interval of radius O ( 1 Q2 m−1 ) in the case of purely real algebraic irrationals, or in circles with the same radius in the General case of real algebraic irrationals, which have complex conjugate of a number. It is established that, starting from some number m0 = m0(α), fair recurrent formula for incomplete private qm expansions of real algebraic irrationals α, Express qm using the values of the minimal polynomial fm−1(x) for residual fractions αm−1 and its derivative at the point qm−1. Found recursive formula for finding the minimal polynomials of the residual fractions using fractional-linear transformations. Composition this fractional-linear transformation is a fractional-linear transformation that takes the system conjugate to an algebraic irrationality of α in the system of associated to the residual fraction, with a pronounced effect of concentration about rational fraction − Qm−2 Qm−1 . It is established that the sequence of minimal polynomials for the residual fractions is a sequence of polynomials with equal discriminantly. In conclusion, the problem of the rational structure of a conjugate of the spectrum of a real algebraic irrational number α and its limit points.  В работе изучается вид и свойства минимальных многочленов остато ных дробей в разложении алгебраических чисел в цепные дроби. Показано, что для чисто-вещественных алгебраических иррациональностей α степени n > 2, начиная с некоторого номера m0 = m0(α), последовательность остаточных дробей αm является последовательностью приведённых алгебраических иррациональностей. Дано определение обобщённого числа Пизо, которое отличается от определения чисел Пизо отсутствием требования целочисленности. Показано, что для произвольной вещественной алгебраической иррациональности α степени n > 2, начиная с некоторого номера m0 = m0(α), последовательность остаточных дробей αm является последовательностью обобщённых чисел Пизо. Найдена асимптотическая формула для сопряжённых чисел к остаточным дробям обобщённых чисел Пизо. Из этой формулы вытекает, что сопряжённые к остаточной дроби αm концентрируются около дроби − Qm−2 Qm−1 либо в интервале радиуса O ( 1 Q2 m−1 ) в случае чисто-вещественной алгебраической иррациональности, либо в круге такого же радиуса в общем случае вещественной алгебраической иррациональности, имеющей ком- плексные сопряжённые числа. Установлено, что, начиная с некоторого номера m0 = m0(α), справед- лива рекуррентная формула для неполных частных qm разложения вещественной алгебраической иррациональности α, выражающая qm че- рез значения минимального многочлена fm−1(x) для остаточной дроби αm−1 и его производной в точке qm−1. Найдены рекуррентные формулы для нахождения минимальных многочленов остаточных дробей с помощью дробно-линейных преобразований. Композиция этих дробно-линейных преобразований является дробнолинейным преобразование, переводящем систему сопряжённых к алгебраической иррациональности α в систему сопряжённых к остаточной дро- би, обладающую ярко выраженным эффектом концентрации около рациональной дроби − Qm−2 Qm−1 . Установлено, что последовательность минимальных многочленов для остаточных дробей образует последовательность многочленов с равными дискриминантами. В заключении поставлена проблема о структуре рационального сопряжённого спектра вещественного алгебраического иррационального числа α и о его предельных точках. 

    Similar works