Agouti NOD : identification of a CBA-derived Idd locus on Chromosome 7 and its use for chimera production with NOD embryonic stem cells.

Abstract

Penetrance of the complex of genes predisposing the nonobese diabetic (NOD) mouse to autoimmune diabetes is affected by the maternal environment. NOD.CBALs-Tyr(+)/Lt is an agouti-pigmented Chromosome 7 congenic stock of NOD/Lt mice produced as a resource for embryo transfer experiments to provide the necessary maternal factors and allow the easy identification of NOD (albino) embryo donor phenotype. CBcNO6/Lt, a recombinant congenic agouti stock already containing approximately 50% NOD genome, was used as the donor source of a wild-type CBA tyrosinase allele. When the incidence of diabetes was assessed after nine generations of backcrossing and one generation of sib-sib mating, significant reduction in diabetes development was observed. No difference in diabetes development was observed in Tyr/Tyr(c) heterozygotes, showing that protection was recessive. Analysis of diabetes progression in another NOD stock congenic for C57BL/6 alleles on Chromosome 7 linked to the glucose phosphate isomerase (Gpi1(b)) locus provided no protection, indicating that the diabetes resistance (Idd) gene was distal to 34 cM (D7Mit346). Approximately 5 cM of the distal congenic region overlaps a region from C57L previously associated with protection when homozygous. The delayed onset and reduced frequency of diabetes in the NOD.CBALs-Tyr(+)/Lt stock is an advantage when females of this stock are used as surrogate mothers in studies involving hysterectomy or embryo transfers. Indeed, a newly developed NOD embryonic stem (ES) cell line injected into NOD.CBALs- Tyr(+)/Lt blastocysts produced approximately 50% live-born mice, of which approximately 11% were chimeric. Presumably because of high genomic instability, no germline transmission was observed

    Similar works