Border bases can be considered to be the natural extension of Gr\"obner bases
that have several advantages. Unfortunately, to date the classical border basis
algorithm relies on (degree-compatible) term orderings and implicitly on
reduced Gr\"obner bases. We adapt the classical border basis algorithm to allow
for calculating border bases for arbitrary degree-compatible order ideals,
which is \emph{independent} from term orderings. Moreover, the algorithm also
supports calculating degree-compatible order ideals with \emph{preference} on
contained elements, even though finding a preferred order ideal is NP-hard.
Effectively we retain degree-compatibility only to successively extend our
computation degree-by-degree. The adaptation is based on our polyhedral
characterization: order ideals that support a border basis correspond
one-to-one to integral points of the order ideal polytope. This establishes a
crucial connection between the ideal and the combinatorial structure of the
associated factor spaces