research

Intrinsic leakage of the Josephson flux qubit and breakdown of the two-level approximation for strong driving

Abstract

Solid state devices for quantum bit computation (qubits) are not perfect isolated two-level systems, since additional higher energy levels always exist. One example is the Josephson flux qubit, which consists on a mesoscopic SQUID loop with three Josephson junctions operated at or near a magnetic flux of half quantum. We study intrinsic leakage effects, i.e., direct transitions from the allowed qubit states to higher excited states of the system during the application of pulses for quantum computation operations. The system is started in the ground state and rf- magnetic field pulses are applied at the qubit resonant frequency with pulse intensity fpf_p. A perturbative calculation of the average leakage for small fpf_p is performed for this case, obtaining that the leakage is quadratic in fpf_p, and that it depends mainly on the matrix elements of the supercurrent. Numerical simulations of the time dependent Schr\"odinger equation corresponding to the full Hamiltonian of this device were also performed. From the simulations we obtain the value of fpf_p above which the two-level approximation breaks down, and we estimate the maximum Rabi frequency that can be achieved. We study the leakage as a function of the ratio α\alpha among the Josephson energies of the junctions of the device, obtaining the best value for minimum leakage (α0.85\alpha\approx0.85). The effects of flux noise on the leakage are also discussed.Comment: Final improved version. Some figures have changed with new results added. To be published in Phys. Rev.

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020