research

Effective Inner Radius of Tilted Black Hole Accretion Disks

Abstract

One of the primary means of determining the spin of an astrophysical black hole is by actually measuring the inner radius of a surrounding accretion disk and using that to infer the spin. By comparing a number of different estimates of the inner radius from simulations of tilted accretion disks with differing black-hole spins, we show that such a procedure can give quite wrong answers. Over the range 0 <= a/M <= 0.9, we find that, for moderately thick disks (H/r ~ 0.2) with modest tilt (15 degrees), the inner radius is nearly independent of spin. This result is likely dependent on tilt, such that for larger tilts, it may even be that the inner radius would increase with increasing spin. In the opposite limit, we confirm through numerical simulations of untilted disks that, in the limit of zero tilt, the inner radius recovers approximately the expected dependence on spin.Comment: 5 pages, 4 figures, accepted to ApJ Letter

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 05/06/2019