research

Two-sample Bayesian Nonparametric Hypothesis Testing

Abstract

In this article we describe Bayesian nonparametric procedures for two-sample hypothesis testing. Namely, given two sets of samples y(1)  \mathbf{y}^{\scriptscriptstyle(1)}\;\stackrel{\scriptscriptstyle{iid}}{\s im}  F(1)\;F^{\scriptscriptstyle(1)} and y(2)  \mathbf{y}^{\scriptscriptstyle(2 )}\;\stackrel{\scriptscriptstyle{iid}}{\sim}  F(2)\;F^{\scriptscriptstyle( 2)}, with F(1),F(2)F^{\scriptscriptstyle(1)},F^{\scriptscriptstyle(2)} unknown, we wish to evaluate the evidence for the null hypothesis H0:F(1)F(2)H_0:F^{\scriptscriptstyle(1)}\equiv F^{\scriptscriptstyle(2)} versus the alternative H1:F(1)F(2)H_1:F^{\scriptscriptstyle(1)}\neq F^{\scriptscriptstyle(2)}. Our method is based upon a nonparametric P\'{o}lya tree prior centered either subjectively or using an empirical procedure. We show that the P\'{o}lya tree prior leads to an analytic expression for the marginal likelihood under the two hypotheses and hence an explicit measure of the probability of the null Pr(H0{y(1),y(2)})\mathrm{Pr}(H_0|\{\mathbf {y}^{\scriptscriptstyle(1)},\mathbf{y}^{\scriptscriptstyle(2)}\}\mathbf{)}.Comment: Published at http://dx.doi.org/10.1214/14-BA914 in the Bayesian Analysis (http://projecteuclid.org/euclid.ba) by the International Society of Bayesian Analysis (http://bayesian.org/

    Similar works

    Full text

    thumbnail-image

    Available Versions