A MODIFIED FAULT COVERAGE ARCHITECTURE FOR A LOW POWER BIST TEST PATTERN GENERATOR USING LP-LFSR

Abstract

This paper proposes low power pseudo random Test Pattern generation .This test pattern is run on the circuit under test for desired fault coverage. The power consumed by the chip under test is a measure of the switching activity of the logic inside the chip which depends largely on the randomness of the applied input stimulus. Reduced correlation between the successive vectors of the applied stimulus into the circuit under test can result in much higher power consumption by the device than the budgeted power. A new low power pattern generation technique is implemented using a modified conventional Linear Feedback Shift Register which can perform fault analysis and reduce the power of a circuit during test by generating three intermediate patterns between the random patterns by reducing the hardware utilization. The goal of having intermediate patterns is to reduce the transitional activities of Primary Inputs (PI) which eventually reduces the switching activities inside the Circuit under Test (CUT) and hence power consumption is also reduced without any penalty in the hardware resources

    Similar works