A BATTERY ENERGY STORAGE SYSTEM WITH CONTROLLED REDUCED-RATING DYNAMIC VOLTAGE RESTORER

Abstract

In this paper, different voltage injection schemes for dynamic voltage restorers (DVRs) are analyzed with particular focus on a new method used to minimize the rating of the voltage source converter (VSC) used in DVR. A new control technique is proposed to control the capacitor-supported DVR. The control of a DVR is demonstrated with a reduced-rating VSC. The reference load voltage is estimated using the unit vectors. The synchronous reference frame theory is used for the conversion of voltages from rotating vectors to the stationary frame. The compensation of the voltage sag, swell, and harmonics is demonstrated using a reduced-rating DVR. Power quality problems such as transients, sags, swells, and other distortions to the sinusoidal waveform of the supply voltage affect the performance of these equipment pieces. Technologies such as custom power devices are emerged to provide protection against power quality problems. Custom power devices are mainly of three categories such as series-connected compensators known as dynamic voltage restorers (DVRs), shunt-connected compensators such as distribution static compensators, and a combination of series and shunt-connected compensators known as unified power quality conditioner. The DVR can regulate the load voltage from the problems such as sag, swell, and harmonics in the supply voltages. Hence, it can protect the critical consumer loads from tripping and consequent losses. The custom power devices are developed and installed at consumer point to meet the power quality standards such as IEEE-51

    Similar works