MICROWAVE ANNEALING, A PROMISING STEP IN THE ROLL-TO-ROLL PROCESSING OF ORGANIC ELECTRONICS

Abstract

In recent years, organic printable electronics has gained more and more attention [1]. The development and characterization of new printing techniques and functional inks is vital to accomplish solution processable, large area organic electronic devices e.g.: organic photovoltaics (OPV) [2], organic light-emitting diodes (OLEDs)[3].  In this study a systematic comparison is made between hotplate annealing and microwave annealing of (screen) printed Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) layers. PEDOT:PSS films treated with both techniques were characterized and compared by their thin film morphology, their electronic properties and their annealing time. It is shown that no difference in the thin film morphology and final sheet resistance was observed for microwave annealed compared to the hotplate annealed samples. Above that the annealing time is decreased up to a factor 6. These results show that microwave annealing is a feasible fast annealing technique for PEDOT:PSS thin films and can therefor reduce the total processing time of organic and PEDOT:PSS based electronic applications

    Similar works