DEMONSTRATION OF PROTEIN HYDROGEN BONDING NETWORK APPLICATION TO MICROELECTRONICS

Abstract

Model of hydrogen bonding networks in active site of b-lactamase during the last intermediate EY of acylenzyme reaction semicycle is presented. The I-V characteristics of each hydrogen bond are calculated following Marcus theory and theory of protein electrostatics. Simulations showed that HBN characteristics are similar to the characteristics of microelectronic devices such as amplifier, signal modulator, triangular pulse source. The results demonstrated the analogy of HBNs in the active site of β-lactamase protein to microelectronic integrated circuit with multiple outputs each with different characteristics

    Similar works