We consider Dirichlet Laplacian in a thin curved three-dimensional rod. The
rod is finite. Its cross-section is constant and small, and rotates along the
reference curve in an arbitrary way. We find a two-parametric set of the
eigenvalues of such operator and construct their complete asymptotic
expansions. We show that this two-parametric set contains any prescribed number
of the first eigenvalues of the considered operator. We obtain the complete
asymptotic expansions for the eigenfunctions associated with these first
eigenvalues