slides

An Euler-type formula for β(2n)\beta(2n) and closed-form expressions for a class of zeta series

Abstract

In a recent work, Dancs and He found an Euler-type formula for ζ(2n+1)\,\zeta{(2\,n+1)}, n\,n\, being a positive integer, which contains a series they could not reduce to a finite closed-form. This open problem reveals a greater complexity in comparison to ζ(2n)\zeta(2n), which is a rational multiple of π2n\pi^{2n}. For the Dirichlet beta function, the things are `inverse': β(2n+1)\beta(2n+1) is a rational multiple of π2n+1\pi^{2n+1} and no closed-form expression is known for β(2n)\beta(2n). Here in this work, I modify the Dancs-He approach in order to derive an Euler-type formula for β(2n)\,\beta{(2n)}, including β(2)=G\,\beta{(2)} = G, the Catalan's constant. I also convert the resulting series into zeta series, which yields new exact closed-form expressions for a class of zeta series involving β(2n)\,\beta{(2n)} and a finite number of odd zeta values. A closed-form expression for a certain zeta series is also conjectured.Comment: 11 pages, no figures. A few small corrections. ACCEPTED for publication in: Integral Transf. Special Functions (09/11/2011

    Similar works

    Full text

    thumbnail-image

    Available Versions